;gJOURNALOF
“* PEST
SCIENCE

{Q _

123



Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag Berlin Heidelberg. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.comO.

123



J Pest Sci (2016) 89:439D448
DOI 10.1007/s10340-015-0695-6 CrossMark

ORIGINAL PAPER

Larval food inRuences temporal oviposition and egg quality traits
in females ofLobesia botrana

Jer@me Moreau® ¥ Karine Monceau? ¥ Denis Thiery>*

Received: 27 February 2015/Revised: 27 July 2015/ Accepted: 12 September 2015/ Published online: 24 September 2015
! Springer-Verlag Berlin Heidelberg 2015

Abstract Many phytophagous insects are agriculturallarvae, as well as the temporal effects of these parameters.
pests, and control methods require accurate monitoring anthis determination was performed in laboratory experi-
decisions based on the determination of population ageents where larvae were reared on artibcial diets based
structure. The reproductive output (fecundity, egg size an@n dried fruits of seven cultivars. Our results showed that
percent egg hatch) is a central life history trait because ithe cultivars had a signibcant effect on female temporal
determines the offspring number, and temporal ovipositioroviposition. Independent of the food tested, the numbers
patterns are of primary importance in conditioning larvalof oviposited eggs, their size and percent egg hatch
hatching and the occurrence of later larval instars in timedecreased with daily oviposition rank. Such temporal
In turn, these phenomena determine the window for naturgbatterns must be incorporated in age-structured mathe-
enemy attack and thus impact the context of biologicalmatical models used in the design of control strategies.
control programmes. In addition, for most phytophagousTemporal oviposition and variation in egg quality traits
insects, the quality of the host plants that larvae consumwill also be useful in biological control programmes,
determines the insectsO reproductive output. The purposeasfpecially when based on egg or larval parasitoids, which
the present study was to determine whether the number @ thus discussed.
eggs laid, egg size and egg hatch percentage vary with
female age and the cultivar on which females develop a&eywords Lobesia botrand Fecundity! Egg size!

Percent egg hatchCultivars! Female age
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Communicated by T. Zaviezo. ¥ In insects, temporal oviposition and hatching success
& Denis Thigy are critical Fo reproductive success and in determl_n-
thiery@bordeaux.inra.fr ing population age structure and the windows in
which juvenile and other instars are available to
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Introduction age structure determination and the construction of basic
life tables (Carey2001 for a review; Ainseba et aR01L
The abundance of phytophagous insects and the optim&arahani et al.2012. To our knowledge, only a few
regulation of their interactions with their trophic resourcesstudies have examined the effect of the host plant on
are determined by numerous interacting biotic and abiotidemporal oviposition (see Hab2006 Samih and Izadi
factors. Consequently, substantial literature on phy2009, and no studies have examined the egg size and
tophagous insects has been devoted to understanding thercent egg hatch throughout the oviposition period,
factors that govern female reproductive output because thighich are necessary for a complete understanding of the
output determines the potential number of offspring pro-variation in insect oviposition and integration into life
duced. The female reproductive output depends on at leabistory tables.
three determinant life history traits: fecundity, egg size and The European grapevine mothobesia botrangDenis
percent egg hatch. The number of eggs laid by a female ignd Schiffermuller, Lepidoptera: Tortricidae), is certainly
clearly important to determine their reproductive potential,the most harmful grape pest in Europe, north Africa and
but egg size (often correlated to percent egg hatch) is alsoest Asia (Boveyl966 Roehrich and Bolled 991, loriatti
considered a crucial reproductive parameter. Numeroust al. 2011, Thiery et al. 2014, and its recent introduction
studies have examined the relationship between egg siZe Chilean and California vineyards highlights the problem
and Ptness components of the progeny. Such studies oft@f pest management (Gutierrez et aD12 Varela et al.
demonstrate that, within a species, small eggs are les2013. Lobesia botranamay cause serious damage to the
likely to hatch (Fox and CzesaR000 and references grape directly by consuming Bower clusters and fruits, or
therein), and hatching individuals from larger eggs havedy facilitating infection by pathogenic fungi such as grey
higher btness than those from smaller eggs (Karl4€®®  mould disease,Botrytis cinerea (Persoon, Helotiales:
Fox and CzesaR00Q Roff 2002 Torres-Vila and Rodri- Sclerotiniaceae), or black mouldAspergillus spp.
guez-Molina2002. (Micheli, Eurotiales: Trichocomaceae) (Cozzi et 2006
Many insect species are pests and are responsible fdhiery 2008 Delbac and Thiey 2019. It may also facil-
huge annual losses in global crop production (Thackeitate attack by secondary pests, including fruit 3ies (Barata
2002. Most of the control methods currently used toet al. 2012 such asDrosophila melanogaste(Meigen,
increase crop production rely on accurate monitoring andDiptera: Drosophilidae) (Gravot et é2001) andD. suzukii
decisions, which require precise information on the biology(Matsumura, Diptera: Drosophilidae) (Rouzes et24l12).
and the ecology of the pest (Tammaru and Jag26i80. In  Therefore,L. boranais a highly problematic pest in vine-
capital breeder insects (whose individual reproductiveyards and requires permanent monitoring and control
potential is limited by the nutrition ingested during the (Thiery 2008 2011, Ortega-Lopez et aR014). This pest is
larval stages), larval food quality is one of the mostan ideal candidate for testing the effect of the host plant on
important factors that determine female reproductive outtemporal oviposition because (i) previous studies have
put (Awmack and LeatheR002. Several studies have shown strong effects of cultivars where larvae feed on both
shown the inBuence of plant quality on larval development|arval developmental and reproductive life history traits
larval survival and female reproductive output (Awmack (Moreau et al2006a b, ¢, 2007 Thiery et al.2014 and (ii)
and Leathe2002 Thiery and Moreal2005 Moreau et al. information on temporal oviposition is needed for
20063 b, 2007. However, most studies have consideredadvancements in grape pest mathematical models (Ainseba
the effect of the host plant on fecundity, egg size ancet al. 2011).
percent egg hatch without considering the temporal effect The present work focuses on the temporal oviposition of
on these life history traits. This information is lacking the main pest of European vineyards and on how the host
because for the same fecundity, the temporal ovipositioplant can affect this temporal pattern. Therefore, we
pattern could be dramatically different. For instance, alldetermine whether the cultivar on which the females fed as
eggs could be laid in a single session, or an equal numbdarvae affect the number of eggs laid, egg size and egg
of eggs could be laid each day throughout the life of thehatch percentage, as well as the temporal patterns of these
female. These different temporal oviposition patterns carthree life history traits. To examine this dependence, we
lead to differences in population growth rate and the timingconducted laboratory experiments by rearing larvae on
of further larval instars. They can also inBuence biologicalartipcial diets derived from seven different cultivars
control management by modifying the optimal windows of (Chardonnay, Chasselas, Gewurztraminer, Grenache,
attack for natural enemies (e.g. egg parasitoids or predatoMerlot, Pinot and Riesling). We then measured individual
and larval parasitoids). Information on temporal oviposi-female oviposition based on time, egg size and percent egg
tion is needed for progress in the study of pest populatiofatch.
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Materials and Methods Michalczyk et al.2009. The grape cultivar-dried powders
were obtained from grape Rower clustersvbfviniferacv.
Study system, origin and maintenance of moths Chardonnay, Chasselas, Gewurztraminer, Grenache, Mer-

lot, Pinot and Riesling, all of which were harvested from
The strain ofL. botrana (INRA-Bordeaux) used for this our gene collection of grape plants OODomaine de la Grande
study originated from individuals collected in a FrenchFerradeOO, INRA-Bordeaux. The insecticide-free grape
Sauternes vineyard (cultivar Semillon) in 1997, to whichBower clusters were collected at the beginning of the
wild adults are periodically added. This rearing line isgrowing season (beginning of May 2003) at phenological
maintained with a substantial number of caged adultstages 23D27 (Eichhorn and Loreh@77), which corre-
(several thousand a week) to avoid genetic drift. Thisspond to the grape phenology on which the Prst annual
laboratory strain has conserved genetic variability becausgeneration ol. botranalarvae feeds.
considerable variation is found in the larval and adult The Eppendorflids were pierced to allow air circulation.
behaviours and in larval immune parameters (VogelweitHJsing a Pne brush, newly hatched larvae (age h) were
et al. 2011). The stock colony is maintained without dia- transferred individually to the diets in each Eppendorf, with
pause on a semi-artibcial diet (as described indyhand 100 larvae per diet (cultivar). Neonate larvae from eggs
Moreau 20095, with the following composition: 150 ml produced by thousands of caged females were randomly
water, 3 g agar, 9 g maize Rour, 11 g wheat germ, 9 ghosen and assigned to the different diets. Eppendorf tubes
yeast, 0.9 g ascorbic acid, 0.3 g benzoic acid, 0.3 ml maizevere randomized in the Eppendorf racks, which were
oil, 0.3 g nipagin and 0.2 g iprodione, at 241 "C, moved within the climatic chamber every 3 days to mini-
60+ 10 % RH with a photoperiod of 15: 8 h light/- mize the effect of possible climatic gradients.
dark? 1 of dusk. The brst 15 photophase hours were at The larvae from each diet were monitored daily until
1000 lux luminosity, and the last hour (dusk) was at 25 lux.pupation. Two-day-old pupae were then carefully removed
All tests were performed under these conditions. from the diet and weighed to theearest 0.1 mg. Because it is
difbcult to weigh adult moths witsufpcient accuracy, we used
the mass of living pupae as an index of adult body size. Pupae
Larval diet treatments and general procedure were then placed individually in glass tubes (70 rABn® mm
diameter) covered with cotton plugs and stored in the test room
The inBuence of different grape cultivars bnbotranawas  until emergence under the same conditions previously descri-
tested using a standardized procedure {hand Moreau bed. Adults were sexed after emergence by checking their
2005 Moreau et al20063 b). Compared to direct feeding ventral abdominal extremity (Tkig 2008.
on bunches in the laboratory or in the Peld, this procedure All newly emerged female adults resulting from the
has at least three main advantages: (a) feeding isolateglght larval diets were used to evaluate the temporal effect
larvae prevents competition and subsequent food deprivasf (1) egg laying, (2) egg size and (3) larval hatching.
tion; (b) it prevents differences in grape bunch compactBecause it has been reported that the cultivars on which
ness, which impact larval feeding behaviour (ourlarvae develop can modify the female oviposition prefer-
unpublished observations) and the climatic environmenences (Moreau et al2008, we decided not to run the
(temperature and insolation) of the larvae (Pieri and Fereviposition experiments on one specibc cultivar, which
maud 2005; and (c) it prevents infections by fungi on may have interfered with the temporal oviposition. Thus,
grapes, which may affect larval btness as shown byve used an inert substrate (i.e. considered equal for all
Savopoulou-Soultani and Tzanakakis988 and Mondy females) where females could deposit their eggs. Newly
and Corio-Costet000. emerged females (less than 1 day old) were individually
To avoid immature competition, larvae were rearedconbned to 0.5 litre transparent cellophane bags as mating
individually to pupation in Eppendorf tubes blled with and oviposition chambers, and they were provided with
1.5 ml of a medium containing the following (for 100 water ad libitum through a soaked cotton dental wick. One-
Eppendorfs): 150 ml water, 5 g agar, 6 g cellulose powderor two-day-old virgin males originating from the same diet
4 g vitamin-free casein, 3.5 g glucose, 2 g mineral saltwere added to each caged virgin female 1 h before dusk,
0.12 g cholesterol, 0.12 g maize oil, 0.25 g benzoic acidwhich is just before their sexual activity (BovelQ66.
0.1 g nipagin and 12 g freeze-dried grape fruit powderOnly one male was randomly assigned to each female.
Freeze-dried material was obtained from freshly collectedPairs were caged in these bags until the death of both sexes.
grape Rower clusters within 12 h of collection using a Females could behave and oviposit freely inside the
Christ alpha 1D4 LD plus device. This classic procedureellophane bags until death. Each morning, the cellophane
preserves fresh foods (R&0D01) and is typically used for bags were checked, and new eggs laid during the previous
secondary metabolites conservation in grapes (seeight were marked with a specibc colour outside the bags.
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For the analyses, only females that laid a sufbcient numbgrairwise Wilcoxon multiple comparison post hoc tests

of eggs[( 7 eggs) during their lifetime (because non-matedwere performed B values were adjusted for multiple

females can lay only a few eggs) and that began to lay atomparisons using the BenjaminibYekutieli step-up pro-

the beginning of her life were considered to obtain a repcedure; Benjamini and YekutieR001). The same proce-

resentative picture of the temporal oviposition in this spe-dure was used to analyse differences in egg size.

cies. We thus obtained the temporal oviposition for a All statistical analyses were performed using R software

variable number of females that depended on the sex ratigy. 3.1.1, R Development Core TeaB014 and imple-

larval survival and mating success: Chardonmay 33, mented using the following packagdme4 (linear mixed

Chasselasn = 24, Gewurztraminern = 24, Grenache effects models)gimmADMB (negative binomial general-

n = 20, Merlotn = 35, Pinotn = 34 and Rieslingr = 29. ized linear mixed effects model with zero-inRated data) and
At the end of the experiment (i.e. when the females werear (deviance analysis for unbalanced design).

found dead in the bags), we randomly selected a sample of

females that had laid a sufbcient number of eggs each day in

each cultivar to assess egg size and percent egg hatcResults

Chardonnayn = 14, Chasselasn = 9, Gewurztraminer

n= 12, Grenacha = 9, Merlotn = 17, Pinotn = 15and Number of eggs laid throughout the oviposition

Rieslingn = 10. For each selected female, three eggs fronperiod

the walls of the cellophane bags were randomly selected per

oviposition day, when possible. Indeed, some femaleJhe total number of eggs laid did not differ among females

sometimes laid less than three eggs per day, particularly d&d on the different cultivar diets (GLMMyv? = 4.07,

the end of life. Previous studies we have done (results nalf = 6, P = 0.67) but varied positively according to the

shown in this paper) showed that measuring three eggs perass of the pupaesf = 18.77, df= 1, P\ 0.0001). The

oviposition day and per female gives the same results than ifumber of eggs laid decreased with oviposition day (fe-

we measured more eggs whatever the oviposition ranknale age) with the maximum of eggs laid in the brst day of

Each egg was then measured with an ocular micrometraviposition and with only few eggs laid at the end of the

The egg surface (estimated as an elliptic surfacepviposition period ¥ = 231.57, df= 6, P\ 0.0001,

S= p9 a9 binmm? whereaandb are the ellipse semi- Fig. 1). A signibcant interaction between cultivar and day

axes) was used as an index of egg size. The mean egg sisas found (interaction cultiva® day, v?= 62.51,

per day was estimated for each female from this sample. To

estimate daily fertility (i.e. hatching success), the measurer

eggs were incubated at 2Z for 10 days until hatching. Q —_

Statistical analysis o
For all analyses, mixed effects models were performed w
including the identity of the females as a random effect. 3 Ch
The pupal mass of the females was also included to contrc's

for its potential effect. The number of eggs laid by day and é 8
cultivar was compared using negative binomial generalize( 2
linear mixed effects model (GLMM) accounting for zero- g
inBated data. The statistical signiPcance of each paramet
was tested witlv? statistics for unbalanced design (Fox and
Weisberg 2011). The proportion of hatching eggs was
arcsine square root transformed to normalize. However,th ~ _ | 1+ 1 Lo )
transformed variable was not normally distributed and did o1 02 03 D4 05 06 57
not meet the assumption of homoscedasticity, as was tr (199)  (199) (1or)  (184)  (153)  (103)  (50)
case for the size of eggs laid. Therefore, the proportion o Days

hatched eggs and their size were compared among cultivagig. 1 Number of eggs laid by aobesia botrangemale according
and days using a linear mixed effects model based on ranto the day of oviposition for all cultivarsBold line median; box
transformation (as a more powerful alternative to themiddle two quartiles dashed lines1.59 interquartile rangeppen
cassical non-parametrc Friedman test, Baguiyla. 0% ST e The bers e e pareneses nocae e
The statistical signibcance of each parameter was testegitferent (°[ 0.05) based on pairwise Wilcoxon multiple compar-
with Wald v? statistics for unbalanced design. In each caseison post hoc tests

o® 00 ®
00

20
|
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Chardonnay Chasselas Gewurtz Grenache Merlot Pinot noir Riesling

Fig. 2 Number of eggs laid byobesia botrandemale according to inside the parentheses indicate the number of females. Columns with
the day of oviposition and for each cultivar where the female camehe same letter are not signibcantly differe®[( 0.05) based on
from. Bold line median; box middle two quartiles dashed lines  pairwise Wilcoxon multiple comparison post hoc tests

1.59 interquartile rangeppen circle extreme value. The numbers

df = 36,P\ 0.01, Fig.2), indicating that larval diets with 0 | a b b c d e e
different grape cultivars had an effect on female tempora h
oviposition. For some cultivars, such as Gegitaminer ° °
and Pinot noir, the number of eggs laid remained stable fo - 3 g o
the brst 4 days of oviposition and decreased for the < i - _'_ -
remaining oviposition days, whereas for other cultivars, - : i L
such as Chardonnay, the numbers of eggs laid decreas g ‘ ! E |
linearly with oviposition days (Fig2). 8 el 1 . : e
(2] | 1 |
o ! ! | 1 :
Egg size variation throughout the oviposition period i 4 i ;
R i : :
The size of the eggs laid by females fed with different - | - i E
cultivars during their larval period did not differ (linear R
mixed effect modelv® = 11.45, df= 6,P = 0.08) and did o
not vary with female pupal massv{= 0.62, df= 1, g
P = 0.43). However, the size of eggs decreased witt D1 D2 D3 D4 D5 D6 p7

(256)  (263)  (247)  (247)  (236)  (144)  (69)

increasing daysvf = 340.92, df= 6, P\ 0.0001, Fig.3).
There was also a signibcant interaction between day ar
cultivar (V> = 132.26, df= 36, P\ 0.0001): for some Fig. 3 Egg size according to the day of oviposition for all cultivars.

cultivars, such as Chardonnay or Riesling, the size of eggBold line median; box middle two quartiles dashed lines

laid remained stable for the Prst 4 days of oviposition ar](_1.59 interquartile rangeppen circle extreme value. The numbers

h h f h It h . inside the parentheses indicate the number of measured eggs.
then decreased, whereas for other cultivars, such as I:’mCOIumns with the same letter are not signibcantly different

noir, the size of eggs laid decreased progressively @ig. (P[ 0.05) based on pairwise Wilcoxon multiple comparison post
hoc tests

Days

Percent egg hatch throughout the oviposition period

df = 1,P = 0.53) or among cultivars/¢ = 10.44, df= 6,
The percent of hatching eggs did not vary according to thé> = 0.11). However, the percent of hatched eggs
female mass (linear mixed effects model? = 0.40, decreased with increasing oviposition dayé ¢ 93.77,
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Chardonnay Chasselas Gewurtz Grenache Merlot Pinot noir Riesling

Fig. 4 Egg size according to the day of oviposition and for eachnumber of measured eggs. Columns with the same letter are not
cultivar where the female comes froBold line median;box middle  signipcantly different R[ 0.05) based on pairwise Wilcoxon
two quartiles dashed lines1.59 interquartile rangeppen circle multiple comparison post hoc tests

extreme value. The numbers inside the parentheses indicate the

o] a a ab be ed d cd approximately 90 % of eggs hatched, whereas only
T T approximately 60 % of eggs hatched at the end of the
5 2o o T oviposition period.
g Lol ]
P -
8 e’ l T I Discussion
: [
£ o7 One of the goals of the present study was to assess the
E J o temporal effect on three major life history reproductive
g @ ° traits of L. botrana (fecundity, egg size and percent egg
£ hatch). Our results show that all three parameters decreased
g o | over time. The second goal of this study was to determine
© 4 whether larval feeding on diets containing different culti-
- vars had an effect on the temporal oviposition patterns and
S on egg size and percent egg hatch throughout the ovipo-

D1 D2 D3 D4 D5 D6 D7 . . .
(256) (253) 247)  (247) 236)  (144) (69) sition period. Our results clearly showed that the cultivar

Days on which females developed as larvae had a signibcant
) ) ) ) ~effect on the temporal oviposition and egg size. However,
Fig. 5 Proportion of hatching eggs according to the day of oVipo- 1 effect on percent egg hatch was detected. This result
sition for all cultivars.Bold line median;box middle two quartiles . . . L .
dashed lines1.59 interquartile rangeppen circle extreme value. !nd'cates that food characteristics assoua.tedl with the
The numbers inside the parentheses indicate the number of egg@imature stages affect how adult females distribute eggs
checked for percent egg hatch. Columns with the same letter are negjver time. This phenomenon, combined with the effect of
signibcantly different R[ 0.05) based on paiwise Wilcoxon o tivars on the larval growth rates, may explain how the
multiple comparison post hoc tests L t - .
P P P distribution of the next adult generation varies over time
_ . _ . . (Thiery et al. 2014).
df = 6, P\ 0.0001, Fig5), with no interaction with cul- In the context of our study, the distinction between
tivar (interaction cultivar9 day, v° = 38.80, df= 35, income and capital breeding insects is important. Income
P = 0.30). At the beginning of the oviposition period, preeder females mature their eggs throughout their adult
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life, whereas capital breeders emerge with a nearly bxedclosion. Therefore, their ovarioles usually contain a series
number of ovocytes (Papa000. Lobesia botranais  of oocytes in successive stages of developmentL.in
considered a capital breeder (species with non-feedinpotrang we found a delay of approximately 4 days
adults); its female reproductive potential is thus limited bybetween encountering a mate and the brst egg laid (Moreau
the resources accumulated during the larval stage (Slanslket al. 2006a 2007). During this time, the brst eggs have
and Rodriguez1987 Awmack and LeatheR002. In our time to mature and enlarge with yolk. The only reason for
experimental design, females lacked access to any addihe differential size is thus the amount of yolk, which is
tional food except clear water, so the resources mobilizedelated to the decreased synthesis by the fat body or its
for the egg production were derived from reserves accudepletion.
mulated during the larval stage (Awmack and Leather The proportion of larvae that hatched from eggs was
2002. Previous studies showed that pupal mass is a goostrongly dependent on the oviposition days; fewer eggs
predictor of fecundity inL. botrana(Moreau et al.2007). hatched at the end of the life of females independently of
Egg-laying activity is under physiological pressure fromthe cultivars, which is consistent with the amount of yolk in
the oogenesis process and oocyte formation (McDonalthe egg. This decline can be interpreted as a result of the
and Bordenl995 Chapman et al2013. Females used in egg size decrease, which was clearly associated with the
the present study had an average egg load of 14437.8 egg size in that species (Moreau et 20063 2007), most
eggs and laid approximately 60 % of its eggs in the twolikely because larger eggs have the largest nutritional
prst days of the laying period. Subsequently, the number gfrovisions inside, as already shown in other species (Ber-
eggs laid decreased daily until the death of the female. Thagan 1991, Fox and CzesaR000. This decrease is not due
large number of eggs laid during the brst night could beo a decrease in sperm numbers because we showed that in
adaptive because under natural conditibnbotranaadults L. botrana one male ejaculate contains much more sper-
have a relatively short life expectancy (ca. 1 weekmatozoids than necessary to fertilize all female eggs
according to the climatic conditions) (Moreau et2006a  (Muller et al. 2015.
b; Thiery 2008. In addition, the predation risk fora mothis ~ Our results show that the effect of the cultivar on which
high because nocturnal insectivores often prey on mothggmales developed as larvae had a signibcant effect on the
these predators include bats, species of owls and othéemporal oviposition and egg size. For some cultivars, the
species of birds (Arlettaz et &2000. Given that there isa number and the size of eggs laid remained stable for the
delay between encountering a mate and the prst egg laid &frst 4 days of oviposition and decreased for the remaining
approximately 4 days for a female from our rearing strainoviposition days, whereas for other cultivars the numbers
(Moreau et al20064 or in the bPeld (Moreau et a007),  of eggs laid or the size of eggs decreased through ovipo-
females have only a few days to lay eggs. In that casesition days. However, no effect of cultivar was detected for
laying a maximum number of eggs as quickly as possibleercent egg hatch. This effect is very weak in comparison
could be adaptive. This phenomenon was observed, fao the profound effect of cultivar on total number of eggs
example, inDryas iulia (Fabricius, Lepidoptera: Nym- laid, total mean egg size and mean percent egg hatch that
phalidae), whose females laid the greatest number of eggge have previously demonstrated (Moreau et28l063a b,
at the beginning of the laying sequence (Dunlap-Piank&007).
et al. 1977). We found here that time within the oviposition period
We showed that eggs laid on the brst day of ovipositioraffects the number of eggs laid and the probability that an
are larger than eggs laid on the subsequent days. This siegg hatches. These individual temporal effects also inf3u-
decrease is consistent with previous results performed ience the population scale. The data provided here on time-
the same species (Moreau et 2009. Lepidoptera ovar- dependent offspring production In botranacould also be
iesO structure and morphological aspects of oogenesis argeful for the development of age-structured mathematical
well known (see Swever et aR005 for a review or models of vineyard infestation such as that developed by
Chapman et al. 2012 for a book). Brie3y, oocytes areAinseba et al. Z011). Therefore, we also believe that this
produced in the germarium and begin to move down thdeature needs to be incorporated in futliebotranapop-
ovariole, enlarging as they pass through the vitellariumulation age-structured mathematical models. These effects
where yolk containing both protein and lipids is depositedof time would also infRuence biological control manage-
on them (vitellogenesis). The fat body is the principal sitement based on egg parasitoids, predators and larval para-
of production of the major yolk protein precursor (YPP), sitoids to determine the optimal windows in which natural
which is vitellogenin (V@) in most insects (Swever et al. enemies should be released. As an example, several species
2005. In many butterBies and moths, ovaries contain onlyof Trichogrammacan be used in inundative biological
previtellogenic oocytes and vitellogenesis starts atontrol programmes in a variety of crops against numerous
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